Equivalent Fractions

Core

1: Find the number that replaces the ? in the equivalent fractions.

2: Find the number that replaces the ? in the equivalent fractions.

3: Find the number that replaces the ? in the equivalent fractions.

4: Find the number that replaces the ? in the equivalent fractions.

5: What is the missing number in these equivalent fractions?

$$\frac{2}{5} = \frac{?}{15}$$

6: What is the missing number in these equivalent fractions?

$$\frac{1}{4} = \frac{5}{?}$$

Extension

1: Find the missing number in these equivalent fractions:

$$\frac{2}{25} = \frac{?}{100}$$

2: What is the missing number in these equivalent fractions?

$$\frac{6}{15} = \frac{?}{5}$$

3: Work out the missing number in these equivalent fractions:

$$\frac{?}{4} = \frac{6}{8}$$

4: Use two of the cards below to make a fraction that is equivalent to $\frac{1}{3}$.

- 2 5 6 9 10 12
- **5:** Which letter marks $\frac{3}{5}$ on the number line below?

Challenge

- 1: Find the fraction that is equivalent to $\frac{4}{7}$ and has a denominator of 35.
- **2:** Hana is thinking of a fraction equivalent to $\frac{5}{9}$.

The numerator is greater than 18 and the denominator is less than $40. \ \ \,$

What fraction is Hana thinking of?

3: In your book, copy and complete the image to find three equivalent fractions.

4: Which two of the shapes below are $\frac{3}{4}$ shaded?

5: Which two of these fractions are equivalent to a whole?