Equivalent Fractions

Core

1: Find the number that replaces the ? in the equivalent fractions.

2: Find the number that replaces the ? in the equivalent fractions.

3: Find the number that replaces the ? in the equivalent fractions.

4: Find the number that replaces the ? in the equivalent fractions.

5: What is the missing number in these equivalent fractions?
$\frac{2}{5}=\frac{?}{15}$

6: What is the missing number in these equivalent fractions?
$\frac{1}{4}=\frac{5}{?}$

Extension

1: Find the missing number in these equivalent fractions:

$$
\frac{2}{25}=\frac{?}{100}
$$

2: What is the missing number in these equivalent fractions?
$\frac{6}{15}=\frac{?}{5}$

3: Work out the missing number in these equivalent fractions:
$\frac{?}{4}=\frac{6}{8}$

4: Use two of the cards below to make a fraction that is equivalent to $\frac{1}{3}$.

5: Which letter marks $\frac{3}{5}$ on the number line below?

$0 \quad \frac{1}{10} \quad \frac{2}{10} \quad \frac{3}{10} \quad \frac{4}{10} \quad \frac{5}{10} \quad \frac{6}{10} \quad \frac{7}{10} \quad \frac{8}{10} \quad \frac{9}{10} \quad 1$

Challenge

1: Find the fraction that is equivalent to $\frac{4}{7}$ and has a denominator of 35 .

2: Mana is thinking of a fraction equivalent to $\frac{5}{9}$.
The numerator is greater than 18 and the denominator is less than 40.
What fraction is Mana thinking of?

3: In your book, copy and complete the image to find three equivalent fractions.

$$
\frac{1}{3}=\frac{3}{\square}=\frac{\square}{15}
$$

4: Which two of the shapes below are $\frac{3}{4}$ shaded?

5: Which two of these fractions are equivalent to a whole?

$$
\frac{1}{4} \frac{8}{8} \frac{0}{1} \quad \frac{1}{7} \quad \frac{0}{4} \quad \frac{4}{4}
$$

