Work with numbers between 0 and 1 in standard form

Complete the statements.

a)
$$0.007 = 7 \times \boxed{0.001} = 7 \times 10^{-3}$$

b)
$$0.06 = 6 \times \boxed{0.01} = 6 \times 10^{-2}$$

d)
$$0.0000004 = 4 \times 0.0000001 = 4 \times 10^{-7}$$

e)
$$\frac{7}{10000} = 7 \times 0.0001 = 7 \times 10^{-4}$$

f) three thousandths =
$$3 \times 0.001$$
 = 3×10^{-3}

g) 2 millionths =
$$2 \times 0.00000 \text{ J} = 2 \times 10^{-6}$$

Tick the numbers that are **not** in standard index form.

$$4 \times 10^{-27}$$

$$6 \times 10^{-\frac{3}{4}}$$

$$0.05 \times 10^{-2}$$

$$5.4 \times 10^{-6}$$

$$7 \times 10^{5}$$

Write >, < or = to complete the statements.

a) 0.0001

c) 8×10^{-2}

Write the standard form numbers as ordinary numbers.

a)
$$6 \times 10^{-3} = 0.006$$

d)
$$5 \times 10^{-2} = 0.05$$

b)
$$7 \times 10^{-4} = 0.0007$$

Fill in the missing information.

a)
$$0.008 = 8 \times 0.001 = 8 \times 10^{-3}$$

b)
$$0.009 = 9 \times 0.001 = \boxed{9} \times 10^{-3}$$

c)
$$0.0085 = 8.5 \times 0.001 =$$
 8 · 5 $\times 10^{-3}$

d)
$$0.0083 = 6.3 \times 0.001 = 6.3 \times 10^{-3}$$

e)
$$0.027 = 2 \cdot 7 \times 0.01 = 2 \cdot 7 \times 10^{-2}$$

f)
$$0.000062 = 6.2 \times 0.00001 = 6.2 \times 10^{-5}$$

g)
$$0.67 = 6.7 \times 0.1 = 6.7 \times 10^{-1}$$

h)
$$0.00000056 = 5.6 \times 0.0000000 (= 5.6 \times 10^{-7})$$

Write the ordinary numbers in standard index form.

a)
$$0.0004 = 4 \times 10^{-4}$$

a)
$$0.0004 = 1 \times 10^{-4}$$
 d) $0.002 = 2 \times 10^{-3}$

b)
$$0.00043 = 4.3 \times 10^{-4}$$

b)
$$0.00043 = 4.3 \times 10^{-4}$$
 e) $0.0021 = 2.1 \times 10^{-3}$

c)
$$0.000437 = 6.37 \times 10^{-4}$$

f)
$$0.00201 = \frac{2.01 \times 10^{-3}}{2.01 \times 10^{-3}}$$

- Write the standard form numbers as ordinary numbers.
 - a) $3 \times 10^{-3} =$ 0.003
- d) 8.27 × 10⁻⁴ = 0.000827
- **b)** $3.1 \times 10^{-3} =$ 0.0031
- 0.0000827 e) $8.27 \times 10^{-5} =$
- c) $3.81 \times 10^{-3} =$ 0.00381
- f) $8.207 \times 10^{-5} =$ 0.00008207
- a) The length of a plant cell is about 0.00005 m. Write this length in standard form.

b) A blood cell is about 8×10^{-6} m long. Write this length as an ordinary number.

0.000008

c) The diameter of a proton is about 0.0000000000000087 m. Write this length in standard form.

8.7×10-16

a)

Do you agree with Jack? 45 Explain your answer.

$$6 \times 10^{-4} = 0.0006$$
 $8 \times 10^{-3} = 0.008$

b) Write the numbers in ascending order.

7 hundredths

 7×10^{-7}

0.007

 7.5×10^{-2}

0.017

 6×10^{-7}

100000

0.00000667

 6.6×10^{-6}

6 millionths

 0.3×10^{-4} is not in standard form. $0.3 \times 10^{-4} = 3 \times 10^{-1} \times 10^{-4} = 3 \times 10^{-5}$ Now the number is in standard form.

Use Mo's reasoning to write these numbers in standard form.

a)
$$0.7 \times 10^{-4} = \frac{7 \times 10^{-5}}{70 \times 10^{-4}} = \frac{7 \times 10^{-3}}{100^{-3}}$$

$$0.07 \times 10^{-4} = \frac{7 \times 10^{-6}}{}$$

c)
$$53.8 \times 10^{-4} = \underline{5.38 \times 10^{-2}}$$

 $538 \times 10^{-4} = \underline{5.38 \times 10^{-2}}$
 $0.0538 \times 10^{-4} = \underline{5.38 \times 10^{-6}}$

b)
$$0.6 \times 10^{-3} = 6 \times 10^{-4}$$

 $0.06 \times 10^{-3} = 6 \times 10^{-5}$
 $600 \times 10^{-3} = 6 \times 10^{-1}$

