Using the addition law for indices

a) Fill in the gaps in the calculation.

b) What happens to the base value when 2^{4} and 2^{3} are multiplied?
c) What happens to the indices when 2^{4} and 2^{3} are multiplied?

Amir and Eva are both trying a problem

What has Eva noticed?
(3)

Complete the statements.
a) $3^{4} \times 3^{5}=3 \square$
d) $a^{4} \times a^{3} \equiv$ \qquad
b) $4^{2} \times 4^{6}=$ \square
e) $y^{11} \times y^{6} \equiv$ \qquad
c) $7^{8} \times 7^{10}=$ \square
f) $p^{4} \times p^{7} \equiv$ \qquad
4. The addition rule for indices can be described using algebra. Complete the statement.

The addition rule for indices is $x^{a} \times x^{b} \equiv$ \qquad Describe the rule in your own words.

Simplify the expressions.
a) $x^{3} \times x^{4} \times x^{5} \equiv$ \qquad c) $h^{3} \times h^{8} \times h^{10} \equiv$ \qquad
b) $v^{7} \times v^{7} \times v^{7} \equiv$ \qquad d) $w^{50} \times w^{100} \times w^{250} \equiv$ \qquad

6 Identify and explain the mistake that has been made in each statement.
a) $3^{2} \times 3^{4}=3^{8}$
\qquad
b) $5^{2} \times 5^{3}=25^{5}$
\qquad
c) $10^{4}+10^{5}=10^{9}$
\qquad
d) $5^{3} \times 2^{6}=7^{9}$

Simplify the expressions

a) $a^{3} \times b^{2} \times a^{4} \times b^{5} \equiv a \square_{\times b} \square \equiv$ \qquad
b) $m^{4} n^{3} \times m^{2} n^{3} \equiv$ \qquad
c) $p^{2} q^{2} \times p^{3} r^{3} \times q^{4} r^{4} \equiv$ \qquad

Match the equivalent expressions.

Fill in the missing powers and coefficients.
a) $2 k^{3} \times 4 k \square \equiv \square k^{6}$
b) $2 m^{2} \times 3 m \square \times \square m^{4} \equiv 30 \mathrm{~m}^{16}$
c) $3 d \square \times \square D^{2} \times 2 d^{4} \times 3 D \square \equiv 36 d^{7} D^{5}$
10) Find the value of x.
a) $2^{7} \times 2^{x}=2^{12}$
c) $d^{x} \times d^{x+1}=d^{11}$
b) $3^{x} \times 3^{x} \times 3^{4}=3^{20}$

d) $5^{2 x} \times 5^{x} \times 5^{2}=5^{23}$

$x=$

a) Write out the full multiplication to show why Mo is incorrect.
b) Simplify the expressions.

\square
\square
\qquad
\qquad

