1) a) $\frac{3}{4} + \frac{3}{4} = \frac{6}{4} = l\frac{2}{4}(or l\frac{1}{2})$ b) $\frac{4}{6} + \frac{5}{6} = \frac{9}{6} = l\frac{3}{6}(or l\frac{1}{2})$ c) $\frac{4}{7} + \frac{6}{7} = \frac{10}{7} = l\frac{3}{7}$ 2) a) $\frac{4}{7}$ b) $\frac{2}{6}$ c) $\frac{2}{5}$	3) a) $\frac{4}{8}$ b) $\frac{2}{7}$ c) $\frac{7}{6}$ or $1\frac{1}{6}$ d) $\frac{9}{8}$ or $1\frac{1}{8}$	
1) Greg has incorrectly added the num Also, he has added the denominant $\frac{5}{6} + \frac{4}{6} = \frac{9}{6} = 1\frac{3}{6} = 1\frac{1}{2}$ (Look for children drawing their of 2) There is $\frac{2}{5}$ of one pizza left. Therefore $\frac{Monica}{\frac{5}{5}} = 1\frac{2}{5}$ $\frac{6}{5} = 1\frac{1}{5}$ $\frac{5}{5} = 1$ $\frac{3}{5}$	merators. tors. When adding fractions, we only add the numerators. wn bar models as proof.) ore, ^g of the total has been eaten. There are three possibilities:	
1) There are six possible answers: $\frac{4}{5} + \frac{0}{5} < \frac{2}{5} + \frac{3}{5}$ $\frac{4}{5} + \frac{0}{5} < \frac{3}{5} + \frac{3}{5}$ $\frac{4}{5} + \frac{0}{5} < \frac{4}{5} + \frac{3}{5}$ $\frac{4}{5} + \frac{1}{5} < \frac{3}{5} + \frac{3}{5}$ $\frac{4}{5} + \frac{1}{5} < \frac{4}{5} + \frac{3}{5}$ $\frac{4}{5} + \frac{1}{5} < \frac{4}{5} + \frac{3}{5}$ $\frac{4}{5} + \frac{2}{5} < \frac{4}{5} + \frac{3}{5}$	2) There are 10 possible solutions: $\frac{1}{6} + \frac{2}{6} < \frac{8}{6} - \frac{1}{6}$ $\frac{1}{6} + \frac{2}{6} < \frac{8}{6} - \frac{2}{6}$ $\frac{1}{6} + \frac{2}{6} < \frac{8}{6} - \frac{3}{6}$ $\frac{1}{6} + \frac{2}{6} < \frac{8}{6} - \frac{4}{6}$ $\frac{2}{6} + \frac{2}{6} < \frac{8}{6} - \frac{1}{6}$ $\frac{2}{6} + \frac{2}{6} < \frac{8}{6} - \frac{2}{6}$ $\frac{2}{6} + \frac{2}{6} < \frac{8}{6} - \frac{2}{6}$ $\frac{2}{6} + \frac{2}{6} < \frac{8}{6} - \frac{3}{6}$	

 $\frac{3}{6} + \frac{2}{6} < \frac{8}{6} - \frac{1}{6}$

 $\frac{3}{6} + \frac{2}{6} < \frac{8}{6} - \frac{2}{6}$

 $\frac{4}{6} + \frac{2}{6} < \frac{8}{6} - \frac{1}{6}$

