Solve complex problems with parallel line angles
(1)

Sort the cards into the table.

Angles are equal	Angles sum to 180°	Not enough information

(2) Work out the sizes of the unknown angles.
a)

\square

$$
b=\square
$$

$$
c=\square
$$

$$
d=\square
$$

b)

$c=\square$
$d=$ \qquad

Compare your method with a partner. Which angle rules did you use?Work out the sizes of the unknown angles and label them on the diagram.

Discuss your reasons for each angle with a partner.
Did you work them out the same way?

4
Work out the size of angle x in each diagram.
a)

c)

b)

d)

$A B C D$ is a rectangle.
Work out as many of the unknown angles as possible and label them on the diagram.

$A B C$ is an isosceles triangle.
Line segments $X Y$ and $B D$ are parallel.

a) Write an expression in terms of x for the size of each angle.
$\angle \mathrm{ACB}=\square \quad \angle \mathrm{ACD}=$ \qquad
$\angle A Y X=$ \qquad $\angle B X Y=$ \qquad
$\angle A X Y=$ \qquad $\angle X Y C=$ \qquad
$\angle B A C=$ \qquad
b)

Explain why Amir's value for x is not suitable.

What would be a more suitable value for x ?

