1) Complete the sentences to match each grid.
a) There are $\qquad$ squares shaded out of $\qquad$ -


There is $\qquad$ row shaded out of $\qquad$
The shaded area represents $\frac{\square}{\square}$ or $\frac{\square}{\square}$
b) There are $\qquad$ squares shaded out of $\qquad$ .


2) Shade the grid and circle the answers that match the statement: 70 squares shaded is the same as:


$$
\begin{array}{llll}
\frac{70}{100} & \frac{7}{100} & \frac{70}{10} & \frac{7}{10}
\end{array}
$$

3) Complete the part-whole model.

4) Use the part-whole model to partition the fractions into tenths and hundredths.
a) 95 hundredths

b) 30 hundredths

5) Greg is explaining what this grid shows. Is he correct? Explain your answer.


There are two columns and one row shaded which represents $\frac{3}{10}$ or $\frac{30}{100}$

2) What is missing? Explain your reasoning.

$\qquad$
$\qquad$
$\qquad$
3) Who has the most? Explain your answer. Can you use a diagram to explain?


1) Find 10 ways you can to partition twenty-three hundredths using part-whole models like this one.

2) Read each child's statement and write in the correct fraction that matches.

3) a) There are 10 squares shaded out of 100 .

There is I row shaded out of 10 .
The shaded area represents $\frac{10}{100}$ or $\frac{1}{10}$.
b) There are 35 squares shaded out of 100 .

The shaded area represents $\frac{35}{100}$.
2) The number square should have any 70 squares shaded. The circled fractions should be $\frac{70}{100}$ and $\frac{7}{10}$.
3)

4)
a)

b)


1) Greg is incorrect as even though it looks like two columns of 10 and one row of 10 are shaded, which makes a total of 30 , some of the individual squares appear in both the row and the columns so have been counted twice. If you count the squares individually, there is actually only 28 shaded so this image represents $\frac{28}{100}$
not $\frac{30}{100}$.
2) 



The whole part has $\frac{7}{10}\left(\frac{70}{100}\right)$. If you subtract the $\frac{2}{10}\left(\frac{20}{100}\right)$ from the $\frac{7}{10}$, you're left with $\frac{5}{10}$. Therefore, 5 is missing digit in the $\frac{}{100}$ fraction. To calculate the missing digit from $\frac{7}{100}$, 1 can see that there are $\frac{21}{100}$, which means the missing digit must be I.
3) Neither has more as they both have the same. Sixty eight hundredths written as a fraction is $\frac{68}{100}$. Eight hundredths as a fraction is written as $\frac{8}{100}$ and six tenths written as a fraction is $\frac{6}{10}$, which is the same as $\frac{60}{100}$. If you recombine, then $\frac{60}{100}+\frac{8}{100}=\frac{68}{100}$.


1) Here are 10 possible answers:
$\frac{2}{10}$ and $\frac{3}{100}, \frac{1}{10}$ and $\frac{13}{100}, \frac{22}{100}$ and $\frac{1}{100}, \frac{21}{100}$ and $\frac{2}{100}, \frac{19}{100}$ and $\frac{4}{100}, \frac{18}{100}$ and $\frac{5}{100}, \frac{17}{100}$ and $\frac{6}{100}, \frac{16}{100}$ and $\frac{7}{100}$,

$\frac{15}{100}$ and $\frac{8}{100}, \frac{14}{100}$ and $\frac{9}{100}$
2) 

| Craig | My fraction has five tenths. | $\frac{57}{100}$ |
| :---: | :--- | :--- |
| Lois | My fraction is greater than $\frac{57}{100}$. | $\frac{59}{100}$ |
| Ted | My fraction has fifty four hundredths. | $\frac{54}{100}$ |
| Raj | My fraction can be partitioned into $\frac{5}{10}$ and $\frac{5}{100}$. | $\frac{55}{100}$ |
| Gina | My fraction can be partitioned into $\frac{26}{100}$ and $\frac{3}{10 .}$ | $\frac{56}{100}$ |

