Using the addition and subtraction law for indices

a) Cancel the common factors in this division to show that Tommy is correct.

$$
\frac{2 \times 12 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}{2 \times 2 \times 2 \times 2 \times 2}
$$

b)

Work out 256 divided by 32
Explain your method.

$$
-2^{3}=2 \times 2 \times 2=8
$$

Complete the calculations by filling in the missing values.
a) $\frac{3^{5}}{3^{3}}=\frac{3 \times 3 \times 3 \times 3 \times 3}{3 \times 3 \times 3}=32$
b) $\frac{5^{6}}{5^{3}}=\frac{5 \times 5 \times 5 \times 5 \times 5 \times 5}{5 \times 5 \times 5}=5^{3}$
c) $\frac{7^{10}}{7^{4}}=\frac{7 \times 7 \times 7}{7 \times 7 \times 7 \times 7}=7^{6}$
(3)

Complete the expressions by filling in the missing values.
a) $\frac{k^{5}}{k^{3}}=\frac{k \times k \times k \times k \times k}{k \times k \times k}=k 2$

What patterns do you notice?
The base stays the same and you subtract
the powers.

Complete the statement.
The subtraction rule for indices is $x^{m} \div x^{n} \equiv x^{m-n}$
Describe the rule in your own words.
When dividing, the base stays the same and you
subbract the powers \qquad

Simplify the expressions, giving each answer as a single term.
a) $2^{14} \div 2^{6}=2^{8}$ \qquad d) $p^{8} \div p^{2} \equiv-p^{6}$
b) $a^{9} \div a^{5} \equiv a^{4}$
e) $y^{8} \div y^{4} \equiv y^{4}$
c) $t^{6} \div t^{2} \equiv t^{4}$
f) $3 k^{7} \div k^{4} \equiv 3 k^{3}$
(6)
a)

Discuss with a partner why Alex is wrong.
What is the correct answer? \qquad t^{3}
a) $\left(4^{3} \times 4^{5}\right) \div 4^{2}=4 \frac{8}{8} \div 4^{2}$
b) $\quad\left(t^{5} \times t^{10}\right) \div\left(t^{6} \times t^{7}\right) \equiv t \frac{15}{13}$

$$
\equiv t \sqrt{2}
$$

c) $\left(m^{8} \times m^{4}\right) \div\left(m^{7} \times m^{5}\right) \equiv m^{12} \div m^{12}$

$$
\equiv m 0
$$

8 Fill in the correct operation for each statement.
a) $4^{5}\left(x 4^{7=} 4^{12}\right.$
c) $t^{2} \bigcirc t^{6=} t^{12} \because t^{4}$
d) $h^{4} \bigodot h^{3}=h^{10} \doteqdot h^{9}$
b) $7^{6} \bigodot 7^{4=} 7^{2}$

Rearrange the cards to make a correct statement.

a) $9^{8} \div\left(9^{3} \times 9^{2}\right)=9^{3}$
b) $6^{5} \div\left(6^{2} \times 6^{3}\right) \times 6^{5}=6^{5}$
c) $\left(a^{4} \times a^{7}\right) \div\left(a^{8} \times a^{2}\right) \equiv a$

$$
\text { d) }\left(f^{10} \div f^{3}\right) \div\left(f^{12} \div f^{8}\right) \equiv f^{3}
$$

Compare answers with a partner.

Rosie and Teddy are looking at the same question.
Work out $5^{2} \div 5^{2}$
9) Add brackets to make the statements true

Teddy Rosie
both
neither
Explain your answer.

