Dividing a 2-digit number by a 1-digit number

When dividing a 2-digit number by a I-digit number, we use both mental and written methods.

$$
\begin{aligned}
& 96 \div 6 \\
& \begin{aligned}
96 \div 6 & =(60+36) \div 6 \\
& =10+6 \\
& =16
\end{aligned} \\
& \begin{array}{c}
10 \\
\hline
\end{array} \begin{array}{|c|c|}
\hline 60 & 6 \\
\hline
\end{array} \\
& 6 \longdiv { 1 6 } \\
& -\frac{60}{36}(10 \times 6) \\
& -\frac{36}{0}(6 \times 6)
\end{aligned}
$$

1 For each of these division calculations:

- estimate the answer
- work out the answer
- use a different method to check your answer.

	Ist calculation	2nd calculation
$84 \div 6=$		
$76 \div 4=$		
$72 \div 3=$ Estimate		

2 Arrange each pair of digits to make a division calculation, then work out the answer.

(3) Divide each blue number by a red number to give an answer that is a green number. Draw lines to link the red number to the blue number and the green number.

4 Use the digits 2 to 9 to complete each of these calculations. Each digit can only be used once.
2

$$
\begin{array}{lr}
\square 3 \square & \begin{array}{c}
4 \\
5
\end{array} \\
52 \div \square=13 & 50 \div \square=25 \\
99 \div \square=11 & 72 \div \square=24 \\
90 \div \square=18 & 91 \div \square=13 \\
78 \div \square=13 & 96 \div \square=12
\end{array}
$$

In real life, most division situations involve a remainder. This often results in having to round up or down depending on the situation. Ask your child questions involving remainders, e.g. ' 87 children are going on a coach trip. Each coach holds 32 children. How many coaches are needed?'

